Red Sun
Модератор
- 01.01.22
- 43.439
- 490.923
Другие курсы от автора:
[Мирко Перкусич] Мастерство ChatGPT: раскройте потенциал ИИ для...
[Елена Маршалова] ИИ-помощник в поиске работы (2025)
[Grasser] Брюки, выкройка №1274. Размеры 40-54. Рост 164-170 (2025)
[Сарасвати, Юлия Парамсон] Лилит - как обратить свои страхи себе в пользу (2025)
[Ольга Семишина] Работа с убеждениями. Новый уровень жизни (2025)
[Ольга Семишина] Предназначение и самореализация (2025)
[Ольга Семишина] Доверие к миру (2025)
[Елена Маршалова] ИИ-помощник в поиске работы (2025)
[Grasser] Брюки, выкройка №1274. Размеры 40-54. Рост 164-170 (2025)
[Сарасвати, Юлия Парамсон] Лилит - как обратить свои страхи себе в пользу (2025)
[Ольга Семишина] Работа с убеждениями. Новый уровень жизни (2025)
[Ольга Семишина] Предназначение и самореализация (2025)
[Ольга Семишина] Доверие к миру (2025)
[Елена Кантонистова] [Stepik] Рекуррентные сети в NLP и приложениях (2025)
Слив курса Рекуррентные сети в NLP и приложениях [stepik] [Елена Кантонистова]
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях.
Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".
Чему вы научитесь:
Узнаете как работают рекуррентные нейронные сети
Научитесь работать с фреймворком PyTorch
Сможете решать задачи генерации текстов при помощи RNN
Узнаете, как RNN используются в других областях
Создадите итоговый проект, оформленный в виде FastAPI-сервиса
Слушатели курса освоят следующие темы:
Повторят основы NLP (ML-подходы, w2v, fasttext)
Освоят продвинутые методы Python и познакомятся с фреймворком PyTorch
Узнают как работают рекуррентные нейронные сети
Применят RNN на практике
Освоят фреймворк FastAPI
Сделают итоговый проект с использованием RNN и FastAPI
Узнают о приложениях RNN в других областях
Для кого этот курс:
Курс подойдет всем, кто интересуется областью автоматической обработки текстов (Natural Language Processing)
и в особенности Deep Learning-подходами для решения задач из области NLP.
Программа курса:
Организация курса
Основы NLP: recap
Рекуррентные нейронные сети
Введение в PyTorch
Рекуррентные сети: практика — 1
Рекуррентные сети: практика — 2
Приложения RNN
Ванильный веб-сервис на FastAPI
Итоговый проект
Ваш преподаватель: Елена Кантонистова
Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Подробнее:
Слив курса Рекуррентные сети в NLP и приложениях [stepik] [Елена Кантонистова]
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях.
Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".
Чему вы научитесь:
Узнаете как работают рекуррентные нейронные сети
Научитесь работать с фреймворком PyTorch
Сможете решать задачи генерации текстов при помощи RNN
Узнаете, как RNN используются в других областях
Создадите итоговый проект, оформленный в виде FastAPI-сервиса
Слушатели курса освоят следующие темы:
Повторят основы NLP (ML-подходы, w2v, fasttext)
Освоят продвинутые методы Python и познакомятся с фреймворком PyTorch
Узнают как работают рекуррентные нейронные сети
Применят RNN на практике
Освоят фреймворк FastAPI
Сделают итоговый проект с использованием RNN и FastAPI
Узнают о приложениях RNN в других областях
Для кого этот курс:
Курс подойдет всем, кто интересуется областью автоматической обработки текстов (Natural Language Processing)
и в особенности Deep Learning-подходами для решения задач из области NLP.
Программа курса:
Организация курса
Основы NLP: recap
Рекуррентные нейронные сети
Введение в PyTorch
Рекуррентные сети: практика — 1
Рекуррентные сети: практика — 2
Приложения RNN
Ванильный веб-сервис на FastAPI
Итоговый проект
Ваш преподаватель: Елена Кантонистова
Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Подробнее:
Скачать:![]()
Рекуррентные сети в NLP и приложениях
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях. Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".stepik.org
Для просмотра скрытого содержимого вы должны войти или зарегистрироваться.