
Red Sun
Модератор
- 01.01.22
- 35.003
- 356.829
Другие курсы от автора:
[Олеся Матёрова] Состояние на миллион 38.0. Тариф Результат (2025)
[Виктория Волчег] [Игрушки] Овечка Молли (2024)
[Любовь Шенеман] [vidumshiki] Курс бомба, честно говоря! (Тариф «Умею»)
[Саша Комович] Летний интенсив по мобильной видеосъемке и ретуши. Тариф Без...
[Светлана Шенаева] [Игрушки] Юный мечтатель (2025)
[Виктория Кердман] Телепорт в 2025. Тариф Базовый (2024)
[Виктория Волчег] [Игрушки] Овечка Молли (2024)
[Любовь Шенеман] [vidumshiki] Курс бомба, честно говоря! (Тариф «Умею»)
[Саша Комович] Летний интенсив по мобильной видеосъемке и ретуши. Тариф Без...
[Светлана Шенаева] [Игрушки] Юный мечтатель (2025)
[Виктория Кердман] Телепорт в 2025. Тариф Базовый (2024)
[oreilly] Глубокое обучение для обработки естественного языка, 2-е издание (2020)
Глубокое обучение для обработки естественного языка LiveLessons, второе издание, представляет собой введение в создание моделей естественного языка с помощью глубокого обучения. Эти уроки воплощают в жизнь интуитивно понятные объяснения основных теорий с помощью интерактивных практических демонстраций блокнотов Jupyter. В примерах используются Python и Keras, API высокого уровня для TensorFlow 2, самой популярной библиотеки глубокого обучения. На первых уроках рассматриваются особенности работы с данными естественного языка, в том числе способы преобразования естественного языка в числовые представления, которые можно легко обработать с помощью подходов машинного обучения. На последующих уроках современные архитектуры глубокого обучения используются для прогнозирования данных на естественном языке.
Об инструкторе
Джон Крон — главный специалист по данным компании Untapt, занимающейся машинным обучением. Он представляет популярную серию руководств по глубокому обучению, опубликованную издательством Addison-Wesley, и является автором бестселлера Deep Learning Illustrated. Джон преподает свою программу глубокого обучения в классе Нью-Йоркской академии наук о данных, а также читает лекции в Колумбийском и Нью-Йоркском университетах. Он получил докторскую степень по нейробиологии Оксфордского университета и с 2010 года публикует статьи по машинному обучению в ведущих журналах.
Уровень квалификации
Средний
Узнайте, как
Предварительная обработка данных естественного языка для использования в приложениях машинного обучения.
Преобразуйте естественный язык в числовые представления с помощью word2vec
Делайте прогнозы с помощью моделей глубокого обучения, обученных на естественном языке.
Применяйте самые современные подходы НЛП с помощью Keras, API высокого уровня для TensorFlow 2.
Улучшите производительность модели глубокого обучения, выбрав подходящую архитектуру модели и настроив гиперпараметры модели.
Кому следует пройти этот курс
Эти LiveLessons идеально подходят для инженеров-программистов, специалистов по обработке данных, аналитиков и статистиков, заинтересованных в применении глубокого обучения к данным на естественном языке. Примеры кода представлены на Python, поэтому знакомство с ним или другим объектно-ориентированным языком программирования будет полезно.
Требования курса
Обязательным условием является глубокое обучение автора с помощью TensorFlow, Keras и PyTorch LiveLessons или знакомство с темами, затронутыми в главах 5–9 его книги Deep Learning Illustrated.
Материал на английском языке
Подробнее:

Глубокое обучение для обработки естественного языка LiveLessons, второе издание, представляет собой введение в создание моделей естественного языка с помощью глубокого обучения. Эти уроки воплощают в жизнь интуитивно понятные объяснения основных теорий с помощью интерактивных практических демонстраций блокнотов Jupyter. В примерах используются Python и Keras, API высокого уровня для TensorFlow 2, самой популярной библиотеки глубокого обучения. На первых уроках рассматриваются особенности работы с данными естественного языка, в том числе способы преобразования естественного языка в числовые представления, которые можно легко обработать с помощью подходов машинного обучения. На последующих уроках современные архитектуры глубокого обучения используются для прогнозирования данных на естественном языке.
Об инструкторе
Джон Крон — главный специалист по данным компании Untapt, занимающейся машинным обучением. Он представляет популярную серию руководств по глубокому обучению, опубликованную издательством Addison-Wesley, и является автором бестселлера Deep Learning Illustrated. Джон преподает свою программу глубокого обучения в классе Нью-Йоркской академии наук о данных, а также читает лекции в Колумбийском и Нью-Йоркском университетах. Он получил докторскую степень по нейробиологии Оксфордского университета и с 2010 года публикует статьи по машинному обучению в ведущих журналах.
Уровень квалификации
Средний
Узнайте, как
Предварительная обработка данных естественного языка для использования в приложениях машинного обучения.
Преобразуйте естественный язык в числовые представления с помощью word2vec
Делайте прогнозы с помощью моделей глубокого обучения, обученных на естественном языке.
Применяйте самые современные подходы НЛП с помощью Keras, API высокого уровня для TensorFlow 2.
Улучшите производительность модели глубокого обучения, выбрав подходящую архитектуру модели и настроив гиперпараметры модели.
Кому следует пройти этот курс
Эти LiveLessons идеально подходят для инженеров-программистов, специалистов по обработке данных, аналитиков и статистиков, заинтересованных в применении глубокого обучения к данным на естественном языке. Примеры кода представлены на Python, поэтому знакомство с ним или другим объектно-ориентированным языком программирования будет полезно.
Требования курса
Обязательным условием является глубокое обучение автора с помощью TensorFlow, Keras и PyTorch LiveLessons или знакомство с темами, затронутыми в главах 5–9 его книги Deep Learning Illustrated.
Материал на английском языке
Подробнее:
Скачать:Для просмотра ссылок необходимо выполнить Вход или Регистрация
Для просмотра скрытого содержимого вы должны войти или зарегистрироваться.