Программирование [karpov.courses, Нерсес Багиян, Алексей Кожарин, Никита Табакаев] Machine Learning для начинающих. Часть 3 из 7 (2022)

  • Автор темы Mr. Cat
  • Дата начала
Автор: karpov.courses, Нерсес Багиян, Алексей Кожарин, Никита Табакаев
Название: Machine Learning для начинающих. Часть 3 из 7 (2022)



Описание:

ЧЕМ ЗАНИМАЮТСЯ ML-ИНЖЕНЕРЫ:


В современном мире бизнес сталкивается со многими проблемами, которые требуют неординарных решений. Например, как идентифицировать клиентов, которые хотят уйти, и сохранить их с помощью ценовых факторов?
Работа ML-инженера заключается в решении подобного рода задач и создании систем, которые работают лучше и быстрее, чем решения, сделанные простым человеком.

ДЛЯ КОГО ЭТА ПРОГРАММА:

УЖЕ РАБОТАЕТЕ В IT
Вы уже работаете в IT, но хотите перейти в новую сферу или расширить свои знания и навыки, чтобы применить их в различных областях машинного обучения.

СТАРТ КАРЬЕРЫ
Хотите изучить машинное обучение, но не знаете, с чего начать. Курс научит вас необходимой математической базе для работы в ML и даст навыки для старта карьеры.

ПРОГРАММА КУРСА :

1. ПРИКЛАДНАЯ РАЗРАБОТКА НА PYTHON
Python — один из самых популярных инструментов для анализа данных. В этом блоке мы научимся работать с этим языком, познакомимся с основными библиотеками для ML и узнаем, как грамотно использовать Python при командной работе. Также мы посвятим время изучению инструментов для работы с базами данных, как с помощью классического SQL, так и с помощью Python кода. Полученных знаний будет достаточно для работы не только в области анализа данных, но и в классической разработке на Python.

2. МАШИННОЕ ОБУЧЕНИЕ И ПРИЛОЖЕНИЯ
Классические методы машинного обучения — это основа для большинства современных способов анализа данных, например, для оптимизации банковского ценообразования. Мы изучим основной теоретический инструментарий для успешного построения ML-дизайна в острых проблемах реальной индустрии и отточим новые навыки на практике.

3. ОБЗОР ОСНОВ DEEP LEARNING
Глубинное обучение с использованием нейронных сетей появляется тогда, когда классические модели бессильны: детекция объектов с картинки, генерация осмысленного текста, определение тональности звуковой дорожки и многое другое. В данном курсе мы обзорно посмотрим на решения, которые можно сделать с помощью deep learning, и попробуем в них разобраться.

4. СТАТИСТИКА И A/B-ТЕСТЫ
В этом блоке мы изучим основные понятия математической статистики, необходимые для улучшения моделей. Научимся правильно проводить A/B тестирование, чтобы достоверно измерять влияние внедрения ML моделей на продукт и бизнес. Обсудим нюансы при проведении экспериментов и способы оценки метрик при невозможности проведения A/B-теста.

5. СОБЕСЕДОВАНИЯ И КАК ИХ ПРОЙТИ
В последнем блоке курса мы еще раз вспомним основные моменты из всего курса и обсудим, как проходят собеседования на младшего специалиста в машинном обучении, как к ним готовиться и как их проходить. Мы хотим поделиться своим опытом и помочь пройти первый этап в поиске профессии мечты.

Подробнее:
Скачать:
 
Последнее редактирование модератором:
A

alex3433

Премиум PRO MAX ★
19.04.23
44
3
Первую и вторую часть добавите?
 

Apple Watch

Модератор
01.01.22
10.214
30.871
K

Kaiji

Премиум PRO ★
14.09.22
1
0
Apple Watch
Проверьте, пожалуйста, архив. не открывается
 

Apple Watch

Модератор
01.01.22
10.214
30.871
Apple Watch
Проверьте, пожалуйста, архив. не открывается
Здравствуйте, по ссылке расположен многотомный архив. Необходимо скачать все части архива в одну папку и затем распаковать первую часть - остальные подтянутся автоматически. Для распаковки рекомендуем использовать WinRAR.
 
B

bibibi

Премиум PRO ★
27.01.23
13
1
обновите ссылку, пожалуйста
 

Apple Watch

Модератор
01.01.22
10.214
30.871

Похожие темы

Ответы
0
Просмотры
1K
Red Sun