Финансы и Инвестиции Алгоритмическая торговля. научный подход

  • Автор темы Mr. Cat
  • Дата начала
День 1
Введение:
  • случайность или детерминированность;
  • торговый алгоритм, как статистический прогноз будущего приращения цены;
  • бинарная модель приращений цен, тренд и контртренд, оптимальный алгоритм.
Основы теории вероятностей и математической статистики «за час»:
  • вероятность, как мера числовой оценки шансов появления будущих событий;
  • одномерные случайные величины: функция распределения, математическое ожидание функции от случайной величины, квантили (перцентили) , стохастическое доминирование;
  • многомерные случайные величины: независимость, условные распределения, задача статистического прогноза, регрессия;
  • последовательности случайных величин: стационарность, автокорреляционная и спектральная функции, случайное блуждание, показатель Херста (критика);
  • математическая статистика: выборка, выборочные статистики, достаточные статистики, различение гипотез, оценка параметров, параметрическая и непараметрическая статистика.

День 2
Тестирование и оптимизация торговых алгоритмов, как проверка качества статистического прогноза будущего приращения цены:
  • оценка доли «успехов»;
  • приведение автокорреляционной функции динамики счета к нулевому виду;
  • отсев параметров по:
    • устойчивости;
    • стохастическому доминированию;
    • взаимной корреляции;
    • превосходству «доходность-риск» пассивной стратегии;
    • построение оптимального портфеля из:
      • одного торгового алгоритма с разными параметрами,
      • нескольких торговых алгоритмов на одном активе,
      • портфелей торговых алгоритмов на разных активах;
      • оценка будущей просадки счета методом Монте-Карло.

День 3
Принципы построения торговых алгоритмов:
  • оптимальные алгоритмы при известном распределении будущего приращения цены;
  • бинарная модель приращений цен, «кусочная» стационарность, оптимальные алгоритмы в условиях непредсказуемости точек смены отрезков стационарностей.
Модели цен:
  • конкурентный рынок, условная нормальность, «кусочная» стационарность;
  • кусочно-постоянная условно нормальная модель, тренды, минимаксная модель трендов;
  • кусочно-марковская условно нормальная модель, тренды и контртренды;
  • сильно «антиперсистентная» модель, ступенчатые тренды;
День 4
Примеры трендовых торговых алгоритмов. Часть 1.
  • для кусочно-постоянной условно нормальной модели;
  • для сильно «антиперсистентной» модели.

День 5
Примеры трендовых торговых алгоритмов. Часть 2.
  • для минимаксной модели трендов;
  • для история реальной торговли и модификаций.

День 6
Фильтрация трендовых торговых алгоритмов:
  • кусочно-марковская условно нормальная модель, как основа построения «фильтра пилы»;
  • «фильтры» шортов и плечей, принципы построения, особенности использования.
Примеры контртрендовых торговых алгоритмов:
  • «фильтр пилы», как индикатор торговли контртренда в рамках бинарной модели приращений цен;
  • maximum profit system для опционов.

День 7
Практическое занятие.

Скрытое содержимое, доступно для группы: Премиум - Купить группу
Материал может быть удален по просьбе
 

Похожие темы

Ответы
0
Просмотры
360
Mr. Cat
Ответы
2
Просмотры
471
Mr. Cat
Ответы
0
Просмотры
359
Mr. Cat
Ответы
0
Просмотры
440
Mr. Cat